Все, что вы хотели знать об IP-видеонаблюдении. Часть 3. Светочувствительные матрицы и качество изображения

По сравнению с фотокамерами прошлых лет, у цифровых камер очень мало механических узлов. Их заменили электронные компоненты. Остался неизменным только принцип получения фотографии, который заключается в переносе видимого изображения на какой-либо физический носитель. У старых фотокамер это была светочувствительная плёнка, а у современных цифровых устройств – матрица фотоаппарата. Статья может быть полезна тем, кто интересуется фотографией не только, как искусством, но и хочет понять некоторые конструктивные особенности фотокамер и принципы получения изображения.

Формирование изображения в фотокамере

Матрица, фотодатчик, сенсор – это названия одного и того же устройства, входящего в конструкцию фотоаппарата и являющегося его основным элементом. По конструкции матрица это прямоугольная пластинка разных размеров из химически чистого кремния, на которой методом вакуумного напыления организовано большое количество n-p переходов. Эти переходы представляют собой светочувствительные фотодиоды или фототранзисторы. Таким образом, матрица это интегральная микросхема с несколькими миллионами светочувствительных элементов. Когда на фотодиод попадет свет, он преобразуется в электрический сигнал. В зависимости от объекта съёмки количество света может быть большим или меньшим. Электрические потенциалы с матрицы считываются построчно или поэлементно, затем обрабатываются процессором.

Типы матриц

Матрицы фотоаппаратов могут быть изготовлены по разным технологиям и иметь разные размеры. В фотокамерах применяются следующие виды сенсоров:

  • ПЗС;
  • КМОП;
  • Live-MOS;
  • 3 CCD.

ПЗС матрица состоит из полупроводниковых фотодиодов, а считывание электрических потенциалов осуществляется по горизонтальным строкам. Полевые структуры КМОП намного экономичнее, но за счёт электронных преобразований при считывании, качество картинки несколько хуже, чем на матрице ПЗС. Live-MOS является усовершенствованным КМОП сенсором. Его отличают повышенная чувствительность и быстрая передача сигналов. В матрице используется малошумящий усилитель и низковольтное питание. Это разработка Панасоник, которая применяется в фотоаппаратах этой компании, а так же в камерах Leica и Olympus. 3CCD или трёхматричный сенсор обеспечивает высококачественную цветопередачу с малым уровнем шумов. Разделение цветов осуществляется дихроидной призмой маленького размера с записью каждого из основных цветов на отдельную матрицу. К недостаткам системы 3CCD относятся большие размеры устройства и высокая цена камеры.

ISO-100, выдержка 1 с.

ISO-200, выдержка 1/2 с.ISO-400, выдержка 1/4 с.

Итак, повысив чувствительность до 400 единиц, нам удалось укоротить выдержку с 2-х до 1/4 сек., т.е. практически в 8 раз! Отлично, не правда ли? Всё хорошо, если не думать о том, что 1/4 тоже недостаточно для съёмки без штатива. Но ведь в других случаях укорачивание выдержки в 8 раз реально поможет, например, с 1/10 до 1/80 сек. Дело сейчас не в этом. Действительно, всё хорошо, если не обращать внимания на шумы. И если на ISO-50 их почти нет, а на 100 они малозаметны, то уже на ISO-200 шумы видны вполне отчётливо. Впрочем, некоторым и это покажется приемлемым, а вот на ISO-400 цветная мозаика становятся неприятной, а для кого то совсем невыносимой. Чтобы ясно представить различие посмотрите увеличенные центральные части снимков на iso-50 и iso-400. Как говорится, почувствуйте разницу!

ISO-50, выдержка 2 с.ISO-400, выдержка 1/4 с.

Конечно, в условиях недостатка света лучше всего увеличивать выдержку, а не ISO. Но как правило, на длительных выдержках возникает шевелёнка (дрожание камеры в руках), а шевелёнка смажет картинку. В нашем примере использовался штатив, и потому на 2 сек. смаза не было. Но штатив не всегда удобно с собой таскать, в результате на мелких датчиках с шумами приходиться мириться, и количество мегапикселей тут ни чем не поможет. Даже наоборот, если нарастить их число на маленькой матрице, то это может привести к сильным шумам даже на чувствительности ISO-50.

Часто можно услышать вопрос: «почему на исо 400 компакт шумит больше, чем зеркалка — ведь исо то одинаковы?». Да, но сенсоры у них не одинаковы: зеркальная фотокамера имеет размер матрицы больше! И сравнивать единицы ISO в этом случае не совсем корректно, здесь можно сравнивать только уровень шума. И когда мы меняем в настройках камеры ISO, то меняем не совсем светочувствительность матрицы (чувствительность ей задана на заводе раз и навсегда!), а лишь уровень электрического сигнала — и, соответственно, шума. Поскольку чувствительность большей матрицы изначально выше, то и соотношение сигнал/шум получаем лучше! Надо учитывать, что с годами матрицы, конечно, совершенствуются, поэтому:

!!! в более современных моделях либо шумов будет меньше, либо пикселей больше, либо цена ниже. И наоборот:)

По традиции мы будем (для удобства) говорить, что меняем светочувствительность фотоаппарата. Но, какие термины не используй, в любом случае ISO 3200 на компакте критики не выдерживает… :)

Давайте теперь посмотрим, как шумит зеркальная фотокамера. В следующих примерах использовалась Pentax K10D, совсем древняя (по цифровым меркам) модель, с максимальным ISO 1600), фотосъёмка велась ночью. Вот 4 снимка — на ISO-100, 400, 800 и 1600. Исо-200 я не включил, оно от 100 почти не отличается. Собственно, на таких маленьких картинках они все почти не отличаются! И здесь практически невозможно сравнить (и даже увидеть!) шумы на снимках показанных в пределах превьюшек 400 х 267 пикселей. Вот где сказывается размер матрицы! Поэтому, чтобы увидеть разницу рекомендую кликнуть по фото и увеличить размер. Смотреть шумы нужно в первую очередь на небе, здесь их легче найти:)

ISO-100, выдержка 4 с.ISO-400, выдержка 1 с.

ISO-800, выдержка 1/2 с.ISO-1600, выдержка 1/4 с.

От чего зависят шумы? От размера матрицы и количества мегапикселей, от значения светочувствительности и даже от выдержки. Чем меньше матрица, больше мегапикселей, выше ИСО и длиннее выдержка, тем более заметны цветные вкрапления. Если матрица фотоаппарата сильно нагревается от длительной работы и/или жары, шумы могут стать заметнее, особенно на тёмных участках снимка. Поэтому нельзя говорить, что только одни мегапиксели, или повышенная чувствительность дают сильные шумы — при совпадении благоприятных факторов дефекты от шумов могут быть малозаметны глазу — даже на максимальном ИСО!

В одном из писем мне задали вопрос: «откуда материалы? будьте любезны ссылку в студию!» Но я не библиотекарь — всего лишь делюсь собственным опытом, который привык подтверждать снимками (кстати, тоже своими). Вот 2 фотографии, одна на ИСО 100, другая на ИСО 1600. Зеркальная фотокамера та же самая. Сделаны в светлое время суток при лёгком снегопаде. И короткой выдержке на ISO 100 и — особенно — на ISO 1600. Даже кликнув по снимку и загрузив полноразмерные кадры непросто заметить существенные различия!

ISO-100, выдержка 1/10 с.ISO-1600, выдержка 1/180 с.

Советую щёлкнуть по снимку и затем увеличить его, иначе разницу сразу не понять… без этого фотографии почти неразличимы… Напоминаю, речь идёт о чувствительности ISO-100 против ISO-1600! А что с выдержкой? Нам удалось укоротить её с 1/10 до 1/180 т.е. в 18 раз!! А это уже даёт возможность свободно снимать с рук без штатива с минимальными шумами. Впрочем, здесь мы могли уже на ISO-800 снимать запросто без штатива с выдержкой 1/90 сек, и даже на ИСО 400 с 1/45 сек — для широкого угла такой выдержки обычно хватает…

А вот эксперимент иного рода. Ниже вы видите 2 домашние фотографии. Ничего особенного, одна и та же ёлка, слева снимок без вспышки, справа со вспышкой. Увеличения не сделано, можете не кликать мышью — большой размер посмотрим чуть позже.

На маленьких изображениях никаких деталей не разглядеть, поэтому чуть ниже смотрим их увеличенные центральные части. Ну, что можно сказать? 1 фотография с очень сильными шумами, на второй шумы тоже заметны, но их на порядок меньше. В общем, предполагаем только три варианта. Сейчас автор нам скажет примерно следующее: вот, смотрите, какие разные шумы дают компакт и зеркальная фотокамера на светочувствительности матрицы в 400 единиц. А, возможно, и наоборот: сделано одной и той же камерой, но с разными ИСО. Или разными камерами с разными настройками:) Какой вариант более правильный?

На самом деле оба снимка сделаны одной и той же зеркальной фотокамерой и… с одинаковым iso! Мало того и выдержки не длинные, причём они вполне сопоставимы, 1/30 и 1/45 сек. Почему же такая разница в шумах? Всё дело заключается в освещении. На светлых участках фотографии шумов, как правило, меньше, а на тёмных — больше. Да, кстати, на обоих снимках светочувствительность 1600 единиц ИСО! Смотрим полный размер (при этом следует помнить, что цвет занавесок был изначально белым, да и после фотосъёмки он не пострадал)!

Вывод прост. Даже на одной и той же фотокамере (с одной и той же матрицей), один и тот же сюжет, снятый на одинаковой светочувствительности, может дать количество цветовых дефектов — шумов — совершенно разное!

Теперь мы видим, сколько много факторов влияет на шумы в цифровом фотоаппарате, кроме размера матрицы, до которого мы ещё доберёмся. А сколько рождается мифов и домыслов при сравнении снимков разных фотокамер на одинаковой светочувствительности, чтобы определить — какая из них меньше шумит!

Вот когда на форумах утверждают, что зеркалка фирмы А шумит больше зеркалки фирмы Б, то смех берёт, особенно если фотокамеры (и их матрица!) одной ценовой категории и года выпуска. Видимо, эти люди накупили объективов разных фирм, затем, время от времени, покупают самые последние зеркалки разных производителей, и тестируют их в одних и тех же условиях, чтобы доказать: моя камера (и фирма!) лучше всех… Ничего не поделаешь — это фоторелигия! Покажите эти незатейливые снимки спорящим до хрипоты, примирите их греховные страсти и развейте заблуждения во избежание религиозного кровопролития :)

Однако в случае появления новых фотокамер (точнее новых матриц!) качество снимка на больших ИСО может действительно улучшиться.

Со временем технологии развиваются, матрицы совершенствуются, реки текут, сады цветут, а шумов становится меньше. Их было бы ещё меньше, если производитель попутно не наращивал количество мегапикселей (датчиков)! Это возможно только за счёт уменьшения собственных размеров этих датчиков — чтобы последние уместились на матрице. Это вроде нормально, цветопередача не становится хуже (иногда и лучше), а взамен мы получаем возможность увеличивать картинку. Правда, не совсем понятно, для чего пользователю нужна матрица, скажем в 20 Мп. Я не поверю, что все печатают огромные плакаты, большинство вообще ничего не печатает!

Приведу снимок сделанный Pentax K5-II, камера выпущена в 2012 году на матрице высокой чувствительности. Данная матрица и сейчас неплохо смотрится по фотошироте и уровню шумов при высоких ISO. Если бы не нарастили количество датчиков, уменьшив их размер — шумов было ещё меньше, а счастья больше!

ИСО 3200, матрица о 16 головах миллионах датчиков размер изображения 4928 х 3264

Но смысл есть даже в таком решении. В метро освещение всегда отвратительное, люди двигаются умом и толкаются, а снимок сделан с рук, без штатива. За счёт высокой ИСО удалось добиться выдержки 1/50 сек. Шумы на 3200, конечно, есть, но, если не печатать полным размером, их будет почти не видно, а на карточке 10х15 см их даже гурман не разглядит. Знаете, есть такая каста гурманов, которые считаются большими знатоками и ценителями фотографии по наличию отсутствия шумов, или присутствию их наличия :)

Я намеренно привёл снимок сделанный в боевых условиях, а не при студийном свете, которым иные авторы пользуются (вот странно!) при тестировании матрицы фотоаппаратов на шумы — в своих на редкость непредвзятых обзорах :)

При правильно выбранном освещении результаты будут, конечно, лучше. Даже при обычном дневном свете шумы могут оставлять благостное ощущение вседозволенности от «ненужности» вспышки и штатива. Смотрим полноразмерные кадры (7 Мб), сделанные вышеуказанным фотоаппаратом на ISO 3200 и 12800. Съёмка с рук, вспышка отключена, фокусировка по «глазу». Фото следует увеличить, чтобы разглядеть шумы. Легче всего их найти на фоне :)

Светочувствительность 3200

Светочувствительность 12800

Вообще то матрица данного фотоаппарата имеет максимальную чувствительность 51200, но я не хочу пугать читателя грязью на картинах, от чего ощущение вседозволенности плавно перетекает в унылую безысходность и даже чувство собственной неполноценности :)

По жизни уныние лéчится только водкой психиатрами ответственностью за тех, кого приручили (а мы пытаемся приручить фотографию). И вот, не взирая на огромные цифры чувствительности, возникает странное желание поставить самое низкое ISO и побороть длинную выдержку — применив штатив, вспышку, или иное освещение. Зачем нам матрица о 16 мегапикселях (их бывает гораздо больше) и грязные картины?

Хуже всего, когда мегапиксели наращивают в «новом» фотоаппарате на старой матрице, и делается это сугубо для мирового зла — маркетинга. Ну, это когда обманывают потребителя по закону :)

Теперь давайте посмотрим шумы от полнокадрового фотоаппарата Canon EOS 6D, матрица КМОП 35,8 х 23,9 мм, снимки предоставлены фотолюбителем из Красноярского края. Съёмка с рук без штатива.

ISO-100ISO-1600

ISO-6400ISO-25600

Увеличив фото, мы видим, что ISO 6400 вполне рабочее, а шумы на 1600 и вовсе незаметны. Даже на ISO 25600 вполне можно печатать фотографии небольшого размера (скажем 10 х 15 см), поскольку чем меньше размер отпечатка, тем меньше видны дефекты на нём.

Смотреть шумы дело, конечно, увлекательное, но не стоит впадать в восторг, особенно если сравнить фотографии зеркалки и компакта. Да, зеркальная фотокамера шумит на ISO-800 меньше, чем компакт на ISO-400. Но не следует забывать 2 вещи: 1. все снимки компакта и зеркалки (кроме последних примеров) я делал со штатива — в этом случае ничто не мешает снимать компактом на минимальном ИСО с минимальными шумами. 2. ценность снимка определяется в первую очередь содержанием, а не техническим качеством :-)

Кстати, не следует упрекать автора некачественными и грязными от шумов фотографиями :) Они лишь демонстрируют то, о чём идёт речь, а она идёт про размер и светочувствительность матрицы.

Размер матрицы

Размер имеет значение:) Причём очень большое — это один из главных параметров цифровой фотокамеры. Тот самый который почему то не любят указывать производители. Размер матрицы складывается из размеров датчиков-пикселей и расстояния между ними. Именно от этих показателей в первую очередь зависит разрешение изображения, количество шумов, глубина резкости… Всё крайне важно для фотографа: любит он высокую детализацию, не жалует шумы и хочет иметь шикарную возможность менять диафрагмой глубину резкости. Последнее напрямую зависит от размера фотосенсора:

!!! Чем больше размер матрицы в фотоаппарате — тем меньше глубина резкости на снимке!

Перевожу фразу на русский: мыльницы и компакты дают резкость от пупа до самого горизонта (и это хорошо!), а зеркалкой можно реально регулировать ГРИП, выделяя главный объект съёмки — что ещё лучше :) Размер матрицы говорит и об этом, и о габаритах самих фотокамер: у зеркалок вес и габариты больше.

Понятно, что большая матрица имеет более крупные пиксели, чем маленькая, если количество пикселей осталось прежнее. Перед нами условная схема 2-х матриц, первая от цифрокомпакта с не самой маленькой матрицей 7.2 x 5.3 mm (обозначение 1/1.8″), вторая от зеркальной камеры 23.7 x 15.6 mm (обозначение «APS-C» — Advanced Photo System type-C). На самом деле количество квадратиков-пикселей в реальных камерах гораздо больше, (например, 16 миллионов, а не 48 как здесь), но соотношения сторон на схеме для наглядности выполнены достаточно точно.

При одинаковой пиксельности (здесь, например, у обоих матриц 48 квадратиков-пикселей), площадь каждого пикселя у крупной матрицы больше, и соответственно, светочувствительность и цветопередача у зеркалки куда лучше (а шумов меньше!). Увеличить количество пикселей можно двумя способами — увеличить размер матрицы, а можно, наоборот, уменьшить площадь самих «квадратиков», чтобы их больше уместилось на прежнем размере матрицы. Первый путь дорогой, второй дешевле, так как не нужно увеличивать саму матрицу. Догадайтесь, по какому пути пройдёт производитель, чтобы гордо заявить: в нашей камере теперь не 10, а целых 20 мегапикселей!

Больше мегапикселей для детализации снимка, конечно, хорошо, а вот то, что при этом уменьшилась площадь каждого сенсора — очень плохо. В итоге народ вовсю скупает маркетинговые мегапиксели, никак не задумываясь об их происхождении. Вот примеры подобных матриц в 48 клеток и 192 клетки (мегапикселей стало в 4 раза больше!):

Понятно, что на второй схеме количество мегапикселей нарастили, уменьшив площадь каждого из них. А как ещё, если матрица осталась прежнего размера! И вот уже появляются компакты с 12 и даже с 16 Мп, превосходя в этом даже иные зеркалки. Например, зеркальная камера Nikon D50 имела всего 6 Мп — а этого хватало за глаза и за уши, если не печатать больших плакатов!

Цифровые камеры давно уже перешагнули «порог качества» по мегапиксельности. Раньше камера в 2 мегапикселя считалась профессиональной, а в 1 Мп — любительской, и этого одного мегапикселя явно не хватало для хорошей детализации. Но проблема давно ушла в небытие, а если говорить по большому счёту, то количество пресловутых мегапикселей теперь уже вообще не важно. Это количество давно уже стало избыточным даже в мыльницах. Зато появились другие проблемы! Наращивание избыточной детализации используется теперь больше в маркетинговых целях, а не для реального повышения качества.

Хитрые продавцы, а иногда и производители почти никогда не указывают размеры матриц в миллиметрах, используя вместо них непонятные обозначения в т.н. «видиконовых» дюймах, например 1/2.5″, или 1/1.8″. Смысл этих «попугаев» в том, что чем больше число в знаменателе, тем меньше матрица, что окончательно сбивает с толку неискушённого покупателя. Особенно того, кто прогуливал дроби на школьных уроках по математике :) На подсознательном уровне человек всегда страшиться непонятного, и окончательно запутавшись, он уже готов заглотить любую наживку продавца. И про понятные всем мегапиксели — чем больше, тем круче, и про цену — чем дороже, тем престижней, и про дизайн — «в новом модном корпусе оригинального цвета для стильных и успешных», и прочий бред… Ну а кривая роста психических заболеваний поднимается всё выше и выше, безмерно радуя, почему-то, лишь частных психиатров :)

На самом деле в этих путанных цифрах ничего страшного нет: прежде чем идти в магазин нужно найти нужную информацию на самом правильном сайте и подробно ознакомиться с ней :) Как же найти самый правильный фотосайт? Не буду из ложной скромности отсылать вас на поиск в гуглы, яндексы и прочие рамблеры с запросом «размер матрицы фотоаппарата», поэтому можно спокойно продолжать читать далее :) Чтобы понять эти дюймовые обозначения, достаточно увидеть в таблице соответствующие размеры в миллиметрах. Самый большая матрица (в 35-мм фотоаппаратах) называется полнокадровой, она имеет размер сенсора 36×24 мм.

Матрица. Размеры.
Модель камерыОбозначение в дюймахРазмер матрицы ммКроп
1.ФЭДплёнка 35 мм36 x 241
2.Nikon«APS-C»23.7 x 15.61.5
3.Pentax«APS-C»23.5 x 15.71.5
4.Sony«APS-C»23.6 x 15.81.5
5.Canon«APS-C»22.3 x 14.91.6
6.Olympus4/318.3 x 13.02
7.компакт1″12.8 x 9.62.7
8.компакт2/3″8.8 x 6.64
9.компакт1/1.8″7.2 x 5.34.8
10.компакт1/2″6.4 x 4.85.6
11.компакт1/2.3″6.16 x 4.626
12.компакт1/2.5″5.8 x 4.36.2
13.компакт1/2.7″5.4 x 4.06.7
14.компакт1/3″4.8 x 3.67.5

Повторюсь: совсем не обязательно помнить и держать в голове все эти сведения. Достаточно просто понимать, что число 1/1.8 больше, чем, скажем, 1/3, но значительно меньше размера APS-C. Здесь даже калькулятор не потребуется :)

Чтобы лучше представить эти дюймы, миллиметры, кропы и прочие цифроразмеры, смотрим картинку, наглядно изображающую соотношение размеров зеркальных и компактных фотокамер. Матрицы в мыльницах, как правило, имеют размер от 1/3″ до 1/2″ (самое «ходовое» и минимальное сейчас значение 1/2.3), в более дорогих и продвинутых цифрокомпактах от 1/1.8″ и более.


Это, конечно, весьма условное деление, но лучше сравнивать фотокамеры по размеру матрицы, нежели по мегапикселям. Большой прямоугольник показывает самый крупный размер, который бывает в 35-мм формате. Синий прямоугольник поменьше расскажет о кропнутых зеркалках, зёлёный — о формате 4/3, а самые маленькие 3 квадратика — это матрицы разного класса цифрокомпактов и мыльниц. Буква k означает кроп-фактор. Т.е. во сколько раз данная матрица меньше полного кадра.

Вам не надо учить все эти цифры наизусть, достаточно иметь примерное представление о том, что покупаете. Вот и посмотрите наглядно, какая реальная чувствительность (а не единицы ISO) вас ждут, какие будут шумы и каков вес с габаритами :) На больших датчиках меньше глубина резкости, нежели на малых, а значит легче добиться эффекта размытия заднего плана — почувствуйте это! И на большом размере матрицы объектив, поставленный на фотоаппарат, будет более широкоуголен, чем поставленный на обрезок APS-C («обрезанный» полный кадр), а на обрезке — станет более длиннофокусным — прочувствуйте и сей факт! Да! Пропорции прямоугольников говорят именно об этом, а не только о кропах, пикселях, размерах матриц и прочей, далёкой от фотоискусства и творчества дребедени информации.

Кстати, эти прямоугольники говорят и о стоимости тоже! Когда авторитетно рассказывают, что цена зеркалки упала до размеров топовых компактов, то забывают сказать что это самая дешёвая зеркалка из любительского класса, и при этом не упоминают о разнице в цене топовых зеркалок и мыльниц нижнего диапазона за 2-3 тысячи рублей — а разница эта огромна :) В общем, смотрите и сравнивайте сами!

Меньше всего матрица в фотокамерах мобильных телефонах. Вот образчик рекламы от фотокамеры мобильника Тошибы:

«Toshiba объявила о том, что она обновила и расширила модельный ряд ПЗС матриц Dynastron для встраивания в мобильные телефоны и коммуникаторы. Две новые модели, 3,2-мегапиксельный сенсор ET8EE6-AS и 2-мегапиксельный ET8EF2-AS — существенный прогресс в уменьшении размеров ПЗС матриц для мобильных телефонов и прочих устройств, снабженных фотокамерой. Обе новые модели ПЗС матриц представляют собой существенный шаг вперёд в области миниатюризации при сохранении высокого разрешения. Сенсор ET8EE6-AS представляет собой 3.2-мегапиксельную ПЗС матрицу размером 1/3.2 оптического формата, превосходя предыдущее достижение компании — размер формата в 1/2.6 дюйма.» Кстати, уже появился ещё меньший формат — 1/4 дюйма.

Вот так — «существенный прогресс в уменьшении размеров ПЗС матриц»! Впрочем, для мобильных телефонов это актуально, громоздкий мобильный телефон никому не нужен, а фото в нём — необязательная дополнительная фишка. Мобильный телефон должен быть действительно мобильным! Но у нас речь идёт про фотокамеру — а в ней чем больше матрица, тем больше габариты и вес аппарата. Это естественно. А хороша ли маленькая камера? Кому как. Многим нравиться фотик, которое помещается в нагрудный карман. Однако, большой размер не все считают недостатком. Вес и ухватистость камеры обеспечивают её лучшее удержание в руках, в итоге меньше шевелёнка… Согласитесь, что держать двумя руками маленький фотоаппаратик неудобно, а одной надо и держать, и кнопку пуск нажимать — колебание камеры (и смаз снимка!) почти обеспечены. Что важнее? Ответ может быть таким: это всё таки фотоаппарат, а не мобильный телефон!

Куда больший размер имеют матрицы в зеркалках. На рисунках ниже мы можем сравнить размеры матрицы компактов и зеркальных фотоаппаратов. Зеркальная фотокамера укомплектована, в основном, матрицей формата «APS-C», которая имеет размер 22.7 х 15.1, или 23.7 х 15.6 мм.

компакты

1/3.2″ 1/2.7″ 1/2.5″ 1/1.8″ 2/3″

Компакты и мыльницы имеют малый размер, вес и приемлемую цену. Это их основное, главное и, пожалуй, единственное преимущество :)

кропнутые зеркалки

Матрица у таких зеркалок куда больше, чем у компактов, но, тем не менее, эти зеркалки называют «фотокамера с кропнутой матрицей», камера с урезанным сенсором и даже обрезок…


Вы думаете матрицу «обрезали» чтобы уменьшить размер фотоаппарата, или сделать его дешевле? Нет, это просто попытка удешевить производство, а цену продаж оставить на том же уровне :) В общем, матрицы сделали меньшего размера чем плёночный кадр. На картинках изображён сенсор формата 4/3 (в основном это зеркалки Олимпус), а рядом формат APS-C — Nikon D50, Canon EOS 400D, Pentax K10D и многие другие. Первые в 2 раза мельче полнокадровых матриц, APS-C — меньше в 1.5-1.6 раза. Увы, такие фотокамеры меньше габаритами почему то не стали, чем плёночные зеркалки! Что ещё? Для камер APS-C нередко выпускают «цифровой» объектив с меньшей световой площадью покрытия, но можно использовать и старую «плёночную» оптику — если позволяет байонет (стыковочное крепление объектива с фотокамерой). При этом следует помнить — используя неавтофокусные объективы, придётся фокусироваться вручную.

зеркалки полнокадровые 36×24 мм

Больший сенсор имеют, как правило, очень дорогие профессиональные фотокамеры, у них размер матрицы — как у плёночного кадра: 36 х 24 мм. Интересно, что выпускать их начали позже цифромыльниц и ещё позже обрезанных цифрозеркалок. Для матриц с большей площадью требуется объектив, покрывающий эту площадь, в данном случае полнокадровый (например, плёночная оптика). А вот наоборот не выйдет :) Т.е. маленький объектив для кропнутых фотокамер на полноразмерной матрице использовать нельзя…

Мне часто задают вопрос: что происходит, когда в настройках фотоаппарата выбираем для съёмки меньшее количество мегапикселей. Улучшим ли тем самым качество изображения?

Разумеется, нет! Реальный размер матрицы (и каждого пикселя-датчика) от этого не увеличатся, даже не думайте. Вы просто уменьшаете настройками камеры количество точек ИЗОБРАЖЕНИЯ в файле (как в графическом редакторе на компьютере), а заодно потеряете возможность кадрирования или увеличения фотографии. Взамен получите маленький размер файла, экономию места на карте памяти, а значит, возможность наснимать ещё больше — так много, чтобы вообще ни о чём не думать :)

Если ваше кредо в фотографии — как можно чаще жать кнопку затвора и получать большее количество взамен качества, то эта чудная функция создана именно для вас!

Итак, подведём итоги. Чем больше матрица, тем больше возможностей у камеры, как по цветопередаче, как по разрешению, так и по размерам печатного оттиска. Цена фотоаппарата в очень значительной степени зависит от матрицы.

Тип матриц

Под конец заметим, что фотоматрицы различаются не только по размерам, но и по типам. Бывают следующие типы: — ПЗС-матрицы (CCD). Прибор с зарядовой связью, использующий светочувствительные фотодиоды. ПЗС был изобретен в 1969 г. и первоначально использовался как устройство памяти, но способность устройства получить заряд благодаря фотоэлектрическому эффекту, сделала применение ПЗС основным именно в этом направлении. ПЗС-матрицу выпускают и используют многие ведущие производители, особенно много здесь поработала компания Sony. — КМОП-матрицы (CMOS). Эта технология использует транзисторы и отличается малым энергопотреблением. Микросхемы КМОП были выпущены ещё в 1968 году и вначале нашли применение в калькуляторах, электронных часах, и вообще в тех устройствах, где энергопотребление было критичным. — Live-MOS матрица. Имеет возможность «живого» просмотра изображения. Активно разрабатывается компанией Панасоник, в зеркалках впервые была применена Олимпусом в 2006 г. (фотокамера Olympus E-330). В 2009 году зеркальные цифровые фотокамеры с возможностью визирования по ЖК-экрану имеют практически все крупные производители. В технических характеристиках эта возможность обычно называется «Live View». Есть и другие, например, DX-матрица, Nikon RGB-матрица и иные виды фотосенсоров.

К тому же матрицы различаются по технологии получения цвета. Сам по себе датчик не воспринимает цвет, получая изображение с оттенками серого (больше света/меньше света), а для получения цветов используются цветофильтры. Например: — матрицы с фильтром Байера
— матрицы Foveon X3— 3CCD.
Эта технология делит свет по спектру с помощью специальных призм на красный, зелёный и синий. Причём каждый из них направляется на отдельную матрицу (всем хороша система, кроме одного — больших габаритов!)

Чтобы достигать более яркого изображения с низким уровнем шума матрицы постоянно развиваются. Большинство технологических решений связано с уменьшением неиспользуемой поверхности датчика, оптимизацией управляющих сигналов и разработкой низкошумящих усилителей. Однако не следует боятся того, что скоро фотографы начнут запросто снимать мыльницей в кромешной тьме. Чтобы никто сильно не боялся, фирмы внедряют новые технологии очень постепенно, или вообще не внедряют и держат в секрете до тех пор, пока не высосут из потребителя все деньги за старые :) И совсем не смешно преступно, когда эта история касается не фототехники, а лекарств для умирающих от рака…

Мы не будем более подробно рассматривать типы датчиков их различия и различия цветофильтров. Это может быть очень важно производителям матриц и их технарям, но никак не фотографам, потому что на самих снимках никакой разницы заметно не будет. Я бы посоветовал фотолюбителям уделять больше внимания для видения (в первую очередь глазами!) интересных сюжетов и красивых ракурсов съёмки. Всё таки этот сайт задумывался для помощи начинающим фотографам, а не технарям!

Важные характеристики матриц


Полупроводниковая матрица цифрового фотоаппарата имеет ряд основных характеристик, от которых зависит качество изображения. Это следующие параметры:

  1. Размер
  2. Количество пикселей
  3. Чувствительность
  4. Динамический диапазон
  5. Соотношение сигнал/шум

К дополнительным характеристикам относится напряжение питания и энергопотребление. Они не влияют на картинку и в описании фотоаппарата обычно не указываются.

Кроп фактор


Это главный параметр полупроводниковой матрицы. От него, и в меньшей степени от количества пикселей, зависят важнейшие характеристики изображения, снятого камерой. Кроп фактор это цифра, показывающая, на сколько реальная матрица меньше полнокадрового стандарта. Full Frame – это размер матрицы 24 Х 36 мм. Такими сенсорами оснащаются самые дорогие и профессиональные фотоаппараты. Этот размер соответствует кадру на стандартной фотоплёнке. Для снижения стоимости фототехники, а так же для производства компактных и лёгких любительских фотокамер «мыльниц» применяются матрицы маленького размера.

Существует общепринятый ряд форматов светочувствительных матриц. За полнокадровыми матрицами следует размер 16 Х 24 мм, что соответствует кроп-фактору 1,5. Самыми маленькими сенсорами, применяемыми в недорогих фотоаппаратах, являются матрицы с размерами 4,5 Х 3,4 мм. Это кроп фактор 7,6. Они применяются в дешёвых моделях фотокамер, где высокое качество кадра не требуется.

Разрешение, мегапиксели


Количеством мегапикселей обычно хвастаются продавцы фотоаппаратов, когда предлагают товар начинающим фотолюбителям. К этому параметру следует относиться с осторожностью. Кадр цифрового фотоаппарата состоит из миниатюрных полупроводниковых элементов. Каждый пиксель это сверхминиатюрный фотодиод или фототранзистор. Теоретически получается, что чем больше пикселей, тем выше качество изображения, точнее проработка мелких деталей или разрешение. На практике большое количество пикселей повышает качество изображения только на матрицах большого размера.

Если размер кристалла небольшой, а изготовитель фотоаппаратов сумел разместить на нём большое количество светочувствительных элементов, то качество изображения будет невысоким. Очень важным для матрицы является не только размер отдельных фотоэлементов, но и расстояние между ними. Маленькие расстояния приводят к перегреву матрицы и возрастанию цифрового шума, который характеризуется цветными точками по всему изображению. Кроме того, при сильном диафрагмировании объектива фотокамеры, за счёт дифракции, вокруг элементов изображения будет появляться цветовая окантовка. Поэтому кадр, снятый на фотоаппарате с матрицей 5,4 Х 4,0 мм и 16 Мп, будет гораздо хуже снимка, полученного на камере с размерами матрицы 8,8 Х 6,6 мм и 10 Мп. Считается, что, в камерах, превышение числа мегапикселей свыше 25 будет излишним. Отчасти это связано с разрешением принтеров для фотопечати, когда самые продвинутые модели печатают фотографии с разрешением 9 600 Х 2 400 точек, что соответствует 23,4 мегапикселей.

Светочувствительность


Этот параметр в цифровых фотокамерах является относительной величиной. Кремниевая пластина со светочувствительными элементами имеет постоянную чувствительность. Всё дело в уровнях сигнала, которые поступают с фотодиодов для дальнейшего преобразования. Если на сенсор фотоаппарата поступает мало света, то электрический сигнал с него будет слабым и фотография будет тёмной. Для того чтобы сделать изображение более светлым слабый сигнал можно усилить. Изменяемый коэффициент усиления и является чувствительностью фотоаппарата. Для удобства фотографов чувствительность матрицы выражается в тех же единицах, что и у западного стандарта на фотоматериалы ASA. Соотношение чувствительности ISO и отечественных фотоплёнок выглядит следующим образом:

  • 50 – 45;
  • 64 – 65;
  • 100 – 90;
  • 160 – 130;
  • 320 – 250.

В левой графе величина чувствительности фотоаппарата, а в правой чувствительность фотоплёнки по ГОСТ.

Отношение сигнал/шум


Мелкие цветные точки на изображении возникают от разных причин. Прежде всего, сама матрица даже при отсутствии засветки будет выдавать слабый электрический потенциал. Это и есть шум. Чтобы он не влиял на изображение, уровень полезного сигнала должен намного превышать уровень шума. Шумовые характеристики матрицы повышаются с уменьшением размера пикселя и расстояния между отдельными точками. Поэтому самой некачественной картинкой будет та, которая получена на маленьком сенсоре с большим количеством мегапикселей. Шум фотокамеры заметно возрастает при увеличении коэффициента усиления или чувствительности. Поэтому, если это возможно, рекомендуется снимать на минимальной чувствительности. Отрицательно влияет на качество изображения нагрев матрицы фотоаппарата. Это происходит, когда она постоянно работает, выводя изображение на дисплей. Профессионалы стараются работать с оптическим видоискателем фотокамеры. В этом случае питание на матрицу подаётся только на очень короткое время, и она не успевает нагреться.

Динамический диапазон

Этот параметр определяется промежутком между минимальным и максимальным значением экспозиции, которые отчётливо видны на снимке. Если у фотоаппарата указан динамический диапазон 8 ступеней или EV, то на снимке будут видны объекты, отличающиеся по яркости в 256 (28) раз. Все предметы, яркость которых выше, получатся совершенно белыми. Нижний порог определяется уровнем шумов самой матрицы, а верхний максимальным электрическим зарядом фотодиода.

Сердце цифровой фотокамеры: ПЗС-матрица (часть вторая)

В таких сенсорах рядом с каждым столбцом (который представляет собой последовательный регистр сдвига) располагается буферный столбец (тоже последовательный регистр сдвига), состоящий из ПЗС-элементов, покрытых непрозрачными полосками (чаще металлическими). Совокупность буферных столбцов составляет буферный параллельный регистр, причём столбцы данного регистра «перемешаны» с регистрирующими свет столбцами.

За один рабочий цикл светочувствительный параллельный регистр сдвига отдаёт все свои фототоки буферному параллельному регистру посредством «сдвига по горизонтали» зарядов, после чего светочувствительная часть снова готова к экспонированию. Затем идёт построчный «сдвиг по вертикали» зарядов буферного параллельного регистра, нижняя строка которого является входом последовательного регистра сдвига матрицы.

Очевидно, что перенос заряда матрицы в буферный параллельный регистр сдвига занимает малый интервал времени и перекрывать световой поток механическим затвором нет необходимости – ямы не успеют переполниться. С другой стороны, необходимое время экспонирования, как правило, сравнимо со временем считывания всего буферного параллельного регистра. За счёт этого интервал между экспонированием можно довести до минимума – в результате видеосигнал в современных видеокамерах формируется с частотой от 30 кадров в секунду и выше.

В свою очередь, сенсоры с буферизацией столбцов подразделяются на две категории. При считывании за один такт всех строк можно говорить о матрице с прогрессивной развёрткой (progressive scan). Когда за первый такт считываются нечётные строки, а за второй – чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan). Кстати, за счёт сходства звучания английских терминов «матрица с буферизацией столбцов» (interlined) и «чересстрочная матрица» (interlaced) в отечественной литературе сенсоры с буферизацией строк нередко ошибочно называют чересстрочными.

Как ни странно, «размазывание» заряда (smear) происходит и в матрицах с буферизацией столбцов. Вызвано это частичным перетеканием электронов из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму расположенного рядом буферного элемента. Особенно часто это происходит при близких к максимальному уровнях фототока, вызванных очень высокой освещённостью пикселя. В результате на снимке вверх и вниз от этой яркой точки протягивается светлая полоса, которая портит кадр.

Для противодействия этому явлению увеличивают расстояние между светочувствительным и буферным ПЗС-элементами. В результате усложняется обмен зарядом и увеличивается затрачиваемое на это время, однако искажения кадра, вызываемые «размазыванием», всё же слишком заметны, чтобы ими пренебрегать.

Буферизация столбцов позволяет также реализовать электронный затвор, с помощью которого можно отказаться от механического перекрытия светового потока. С помощью электронного затвора можно получить сверхмалые (до 1/10000 секунды) значения выдержки, недостижимые для механического затвора. Эта возможность особенно актуальна при фотографировании спортивных состязаний, природных явлений и т. п.

Для реализации электронного затвора обязательно необходим антиблюминговый дренаж. При очень коротких выдержках, которые по длительности меньше, чем время переноса заряда из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму буферного, дренаж играет роль «отсечки». Эта «отсечка» предотвращает попадание в яму буферного ПЗС-элемента электронов, возникших в яме светочувствительного элемента по истечении времени выдержки.

Однако схема с буферизацией столбцов не лишена недостатков. Основной минус заключается в том, что буферные регистры сдвига «съедают» значительную часть площади матрицы, в результате каждому пикселю в качестве светочувствительной области достаётся лишь 30% от его общей поверхности. У пикселя полнокадровой матрицы эта область составляет 70%.

Для компенсации этого минуса производители используют микролинзы, располагающиеся над каждым элементом матрицы и фокусирующие весь достающийся пикселю световой поток на сравнительно малую светочувствительную область.

Какой фотоаппарат выбрать

При желании снимать всё подряд, не задумываясь о высоком качестве снимка, можно приобрести любой фотоаппарат типа компакт или «мыльница». Отсутствие ручных режимов, большое количество сюжетных программ и фокусировка на лица, делает такой фотоаппарат простым в обращении и удобным для бытового использования. Для получения качественных снимков подойдёт недорогой фотоаппарат с матрицей большего размера и с возможностью ручной установки некоторых параметров съёмки. Ещё больше возможностей предоставляет пользователю беззеркальная камера «суперзум». Обладая небольшими размерами, она позволяет снимать интересные сюжеты на большом удалении от объекта съёмки, поэтому подойдёт для туристов и путешественников. Самые качественные снимки получаются с помощью зеркальной камеры, хотя её применение ограничивается большими размерами и весом. Если Вы хотите узнать все нюансы выбора фотокамеры, наши эксперты подготовили подробные инструкции в статье как выбрать фотоаппарат.

Виды матриц фотоаппарата и их отличия

Категории: ФототехникаСтили в фотографииСвоими рукамиРедактированиеТеория

Одним из важных факторов, который имеет значение при выборе фотоаппарата, является тип матрицы, являющейся главным структурным элементом. Она представляет собой сенсорное устройство, главная черта которого – высокая чувствительность. Благодаря устройству и работе матрицы оптический сигнал переводится в иное качество – становится цифровым изображением. Тип матрицы и ее качество определяют уровень фотоснимков.

Данный элемент конструкции фотоаппарата внешне выглядит как прямоугольная пластина, которая изготовлена из полупроводникового материала. На поверхности пластины есть огромное количество пикселей (миллионы). Каждый пиксель расположен отдельно друг от друга. Назначение их – формирование одной точки изображения. Каждая матрица имеет определенные физические размеры, чем они больше, тем качество снимка лучше, даже если пикселей расположено одинаковое количество. К физическим параметрам относятся диагональ, площадь, ширина. Измеряются они в миллиметрах. Не всегда в технических характеристиках идет речь о физических параметрах, чаще указывается только количество пикселей. Размер матрицы влияет на вес фотоаппарата, а также на то, как он улавливает цифровой шум.

Таким образом, физические размеры матрицы определяют уровень качества фотоснимков, а уже максимальная величина снимка зависит от количества пикселей. Поэтому не стоит, покупая фотоаппарат, основным параметром делать именно объем мегапикселей.

Существуют разные типы матриц в зависимости от вида светофильтра – матрица RGB (она представляет собой самый распространенный вид), RGBW (дарят прекрасные снимки даже при плохой освещенности), и с фильтрами Баера RGBE (их особенность – максимальная приближенность цветов к естественным, это достигается благодаря большому количеству зеленых пикселей). По применяемой технологии разделяют два вида матрицы, одного из самых важных элементов фотоаппаратов и видеокамер. Первая группа – это ПЗС матрицы (CCD), вторая — КМОП матрицы (CMOS). Первая группа устанавливается именно в фотоаппаратах, а вторая характерна и для конструкций телескопов и микроскопов.

Различаются две группы по способу считывания информации из ячеек. В матрице CCD фотоаппаратов эта информация считывается последовательно, а в матрицах телескопов — отдельно из каждой ячейки. Разницу можно проследить даже на самом простом примере. При типе ПЗС нельзя делать снимки очень быстро, необходимо время для сформирования предыдущих фото. А вот особенности КМОП матрицы отлично подходят для действия автофокуса, для проведения экспонометрии, а также и для обычной фотосъемки. Матрицы типа CMOS требуют меньшего объема энергии для своей работы, да и их производство гораздо экономнее, а цена доступнее.

Существуют еще и трехслойные матрицы, обычно каждый слой – это CCD тип. Их ячейки отличаются тем, что могут воспринимать сразу три цвета. Эти три цвета образуются при попадании света на дихроидные призмы. Потом каждый пучок попадает на матрицу (каждый на отдельную). В результате яркость трех цветов (синего, красного и зеленого) определяется на фотоэлементе сразу. Трехмерные матрицы используются при производстве видеокамер высокого уровня. И аппаратура с такой матрицей имеет специальное обозначение — 3CCD.

ПЗС матрицы изготавливаются из поликремневых фотодиодов, они имеют небольшие размеры и позволяют осуществлять достаточно качественные фотосъемки в условиях с нормальным освещением. А для производства КМОП матрицы применяются комплементарные металлооксидные полупроводниковые материалы. При высоких достоинствах снимков с помощью данного элемента, отмечается и недостаток матрицы – относительно большие размеры. Если в фотооборудовании установлены именно CMOS матрицы, оно будет отличаться большим весом и размером.

Изучив особенности различных видов матрицы, можно теперь, даже не будучи сильным знатоком фототехники, понимать, почему профессиональная техника, которая обеспечивает высокий уровень съемок, имеет большие габариты и вес. И выбор фотоаппарата следует производить не по привычному критерию, то есть по количеству пикселей, а по физическим размерам матрицы. О сайте fotomtv.

Другие темы:

  • Портретные объективы
  • Фазовый и контрастный автофокус
  • Про позы и стили в фотографии
  • Глубина резкости
  • Как сделать камеру обскура из спичечного коробка
  • Рассеиватель (отражатель) для встроенной вспышки
  • Стереофотография
  • Портрет в фотографии
  • Шевеленка в фотографии
  • Съёмка корпоративных вечеринок
  • Выдержка фотоаппарата
  • Как сделать панораму средствами Adobe Photoshop
  • Боке в фотографии (делаем боке в форме сердца)
  • Репортажная съемка
  • Аккумуляторы для фотоаппаратов
  • Амбротипия — фотография на стекле
  • Объективы с творческой начинкой

Показать html-код для вставки в блог

Итоги

При выборе фотоаппарата следует сначала ориентироваться на размер матрицы. Не стоит гнаться за большим количеством точек на изображении. 12-16 Мп более чем достаточно для получения и печати фотографий хорошего качества. Цифровой зум для камеры не слишком важен, так как он только позволяет растянуть центральную часть изображения на весь экран с ухудшением качества. Многие параметры не указываются в спецификации на фотоаппарат, поэтому перед выбором модели неплохо почитать отзывы фотолюбителей на специальных сайтах.

ТЕХНИЧЕСКИЕ СИСТЕМЫ БЕЗОПАСНОСТИ

Матрица — это одно из самых сложных устройств камеры, ее главный и, чаще всего, единственный её орган чувств (еще датчик температуры бывает). В матрице собраны лучшие достижения в области микроэлектроники. Само слово «матрица» означает уход от громоздких электровакуумных монстров к миниатюрным прямоугольным пластиночкам, с помощью которых шустрые китайцы завалили рынок шпионскими гаджетами, упакованными в часы, пуговицы, авторучки и т.д. и т.п.

В описаниях камер присутствуют такие суровые надписи как, скажем, SONY super HAD II CCD 1/3″. Это конечно впечатляет, но при выборе камеры эмоциями руководствоваться не следует. Давайте пройдемся по параметрам матриц хотя бы поверхностно.

1/3″ — это самый ходовой размер матриц, он привязан к диаметру электронной трубки с аналогичными параметрами, т.е. уходит корнями в прошлый век. Достаточно знать, что, чем больше размер, тем выше качество и цена. Поэтому размеры 1″, 1/2″, 2/3″ в видеонаблюдении применяются гораздо реже из-за цены (в профессиональной фотографии их достаточно), хотя качество там выше. Так же матрицы размером 1/4″ и ниже используются реже из-за более низкого качества. Дело в том, что при одинаковом количестве пикселей (элементов изображения) матрица большего размера имеет лучшее качество из-за меньшего количества шумов, наводимых соседними элементами. Со временем наверное размеры уйдут в сторону уменьшения, но пока вот так.

Насчет «SONY super HAD II CCD» — это технология повышения чувствительности цветных камер, разработанная угадайте с трёх раз кем. В подробности вдаваться не будем, кому интересно — полазьте по поисковикам или напишитевопрос в комментарии. Достаточно знать, что сейчас есть 2 основных технологии: CCD (си-си-ди) и CMOS (на жаргоне — чмос), что по нашему соответственно ПЗС (приборы с зарядовой связью) и КМОП (комплементарный металл-оксид-проводник). А реально, для потребителя:

CCD (ПЗС) имеют немного более высокое качество, но дороже;

CMOS (КМОП) подешевле немного, потребляет меньше (ненамного).

Не так давно появилась технология DIS (digital image system — цифровая система изображения). Там матрица собрана на одном кристалле с процессором обработки видеосигнала. Особой революции не произвело — технологии все равно те же. Но вот один эффект интересный — у матрицы температурный диапазон шире в сторону отрицательных температур (до -40). Я так понимаю, что просто процессор, стоящий на одном кристалле с матрицей, её греет — побочный эффект. Но это позволяет отказаться от устройства подогрева, а в наших сибирских условиях это очень важно. Для примера — на одном объекте камеры под вечер начинали отключаться (кстати, тот самый объект, который в «картинках» фигурирует, «Класс защиты« называется). Ну разобрался, дело было в том, что на сопротивлении длинных тонких проводов практически до предела падало напряжение питания камер, а вечером, при снижении температуры (дело было осенью), включался подогрев, ток увеличивался, и напряжение совсем падало — ниже допустимого порога. Вот камеры и отключались. Кстати, аналогичные случаи бывают, когда в темноте включается встроенная инфракрасная подсветка. Просто думать надо, когда объект проектируешь, и на монтаже не халявить. Ну это уже из другой оперы.

Ну, естественно, еще один существенный параметр — это разрешение матрицы, т.е. количество пикселей в строке и количество строк. Для аналоговых камер предел мечтаний ограничен параметрами стандарта PAL — 720х576 пикселей. Так что, если в аналоговую камеру вставить матрицу любой мегапиксельности, изображение останется в указанных пределах. Конечно, при правильной обработке сигнала несколько возрастет качество за счет учета яркости и цветности пикселей, соседних с передаваемыми. Кроме того, за счет суммирования сигналов с соседних пикселей можно увеличить чувствительность. IP-камеры могут выдавать изображение, соответствующее разрешению матрицы, среди них есть мегапиксельные камеры, это их бесспорный плюс. У них есть свои недостатки, но это предмет для отдельного разговора.

Чувствительность матриц — это минимальная освещенность в лк (люкс, единица освещенности, международное обозначение — lx), при которой можно различить объект. На настоящий момент она близка к технологическому пределу. Где-то десятые-сотые доли лк, насколько я помню. Встречаются камеры со значением чувствительности, допустим 0,0001 лк. Тут надо отдавать себе отчет, что она достигнута за счет поочередного суммирования изображений с нескольких последовательных кадров. Это делается силами процессора обработки видеосигнала и к чувствительности матрицы отношения не имеет. При низкой освещенности движущийся объект будет или смазан или вообще не заметен. Следует еще заметить, что в условиях низкой освещенности цветные матрицы могут переключаться в режим черно-белого изображения, причем сигналы цветности RGB (красный, зеленый, синий) складываются в единый яркостный сигнал для повышения чувствительности. При этом, если камера оборудована автоматически убирающимся инфракрасным фильтром, защищающим матрицу в дневное время, то камера может работать с инфракрасной подсветкой, невидимой для невооруженного глаза.

Кстати, наш глаз устроен аналогично — там, на сетчатке есть чувствительные элементы, воспринимающие цветность, но с низкой чувствительностью, а в темноте подключаются другие — высокочувствительные, но черно-белые. Отсюда и утверждение, что ночью все кошки серые.

Есть еще серьёзный параметр — динамический диапазон. Это отношение максимально яркого и максимально темного сигналов, которые матрица способна обрабатывать одновременно. У CCD-матриц этот параметр лучше, но CMOS-ы активно развиваются.

В общем, параметров много, выбирать надо, исходя из задач, условий и финансовых возможностей (прошу прощения за банальность). Обращайтесь к специалистам, можно ко мне

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]