Как работает 3D принтер: объяснение на простых примерах

FDM

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.

Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.

Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.

FDM-принтер на примере MakerBot Replicator 2

Что такое 3D-печать и как устроен 3D-принтер

Технологии 3D-печати или аддитивного производства обрели популярность совсем недавно, хотя первые методы появились на свет еще в середине 80-х годов прошлого века. Назначение 3D-принтеров для многих людей до сих пор остается загадкой, хотя ничего сложного на самом деле нет: это самые настоящие автоматизированные фабрики, способные самостоятельно производить изделия практически любой формы.

3D-принтеры применяются для самых разных задач. Изначально технологии 3D-печати получили название «быстрое прототипирование» и использовались, как можно догадаться, для изготовления прототипов и макетов. Нынешние, усовершенствованные технологии и материалы позволяют печатать уже не просто макеты, а вполне функциональные изделия, пригодные для повседневной эксплуатации: титановые имплантаты и лопатки газовых турбин, пластиковые игрушки, сувениры и корпуса бытовых приборов и гаджетов, керамическую посуду и даже бетонные строительные конструкции. Главным преимуществом 3D-печати над традиционными производственными технологиями считается принцип «прямого производства»: готовые изделия печатаются напрямую с цифровых моделей, в то время как для того же литья под давлением необходимо сначала изготовить дорогостоящую оснастку.

Принцип работы

Методов 3D-печати великое множество, но всех их объединяет общий принцип обработки цифровых моделей: для того чтобы 3D-принтер мог разобраться со сложной трехмерной структурой, цифровая модель разделяется на поперечные срезы, толщина каждого из которых соответствует толщине одного слоя. Представьте себе стопку бумаги, где каждый лист выполняет роль печатного слоя: если каждый лист вырезать по индивидуальному шаблону и вновь сложить в стопку, то получится трехмерный объект заданной формы. Собственно, именно так, вырезая и склеивая листы бумаги, работают 3D-принтеры по технологии LOM, выпускаемые компанией Mcor.

Разница же заключается в методах изготовления слоев и используемых материалах. Так, в стереолитографии (SLA) применяются жидкие фотополимерные смолы, отверждаемые лазером, а в селективном лазерном спекании (SLS) те же лазеры используются для спекания частиц различных порошков – металлических, полимерных или керамических. Самое же широкое распространение получила технология «моделирования методом послойного наплавления», известная под аббревиатурами «FD» и «FFF». Популярность этого метода объясняется простотой и дешевизной как самих печатающих устройств, так и расходных материалов. В качестве сырья используются всевозможные пластики и композиты на полимерной основе, а FDM-принтеры представляют собой максимально упрощенные станки с числовым программным управлением.

В качестве материала используется тонкая пластиковая нить или «филамент», а роль печатающей головки играет «экструдер», состоящий из простого зубчатого механизма, проталкивающего пластиковый пруток в разогретую трубку («хотэнд») и выдавливающего расплавленный пластик через сопло. Расплавленной нитью можно вычерчивать один слой за другим, пока не образуется трехмерная физическая модель. Необходимо лишь устройство, которое будет приводить головку в движение по заданному алгоритму.

Это устройство и называется 3D-принтером. Простейшие настольные 3D-принтеры состоят из шасси, служащего основой для направляющих, по которым передвигается печатающая головка и/или платформа, на которой выполняется построение. В обычном офисном принтере, печатающем на листе бумаги, необходима возможность позиционирования в двух измерениях: как правило, головка движется из стороны в сторону, а сам лист бумаги постепенно протягивается, строка за строкой. Если же мы строим трехмерную модель, то необходимо добавить и третье измерение в механизм позиционирования – так, чтобы можно было ориентироваться не только по ширине и длине, но и по высоте.

Головка и платформа устанавливаются на направляющие и приводятся в движение электромоторами. Порядок работы электромоторов, определяющий движение головки и подачу материала, закладывается в специальный программный код (т.н. G-код). Код вырабатывается автоматически с помощью специальных программ, называемых «слайсерами»: такие приложения берут нарисованные в графических редакторах трехмерные виртуальные модели, а затем разделяют их на слои и конвертируют каждый слой в серию команд, необходимых для построения физического аналога. Головка постепенно вычерчивает каждый слой, выдавливая расплавленный пластик на платформу или нанесенные ранее слои. После окончания слоя головка поднимается (или, наоборот, платформа опускается) на высоту одного слоя, и процесс начинается заново, только с использованием очередного шаблона.

Как правило, толщина нити и самих слоев составляет доли миллиметра: типичный диаметр сопла варьируется от 0,3 до 0,8 мм, тогда как толщина слоя составляет от 50 до 300 микрон. Для сравнения, толщина человеческого волоса колеблется в пределах 80-100 микрон. Очевидно, что печать тонкой нитью занимает достаточно долгое время. Действительно, типичный производственный цикл с легкостью может измеряться часами, а то и превышать сутки: здесь все зависит от выбранного диаметра сопла, толщины индивидуальных слоев и габаритов самого изделия. Чем выше толщина нити и слоев, тем меньше времени уйдет на печать, но и качество поверхностей будет ниже.

Расходные материалы

Одним из самых привлекательных факторов FDM-печати остается огромное разнообразие относительно недорогих расходных материалов. Два наиболее популярных пластика АБС(акрилонитрилбутадиенстирол) и ПЛА (полилактид). С первым вариантом знакомы абсолютно все из нас – это наиболее широко используемый промышленный пластик, из которого изготовлена ваша любимая кофемолка, шариковая ручка, защитный кожух смартфона и множество других бытовых вещей. Второй же представляет собой экологичную альтернативу, будучи органическим, биоразлагаемым полимером, изготавливаемым из кукурузы или сахарного тростника. Пусть ПЛА и не так долговечен, его можно смело выбрасывать в мусор, так как под воздействием среды через несколько месяцев полилактид превратится в безвредный компост.

Но при желании можно печатать и другими материалами: такими популярными термопластами, как поликарбонаты и нейлон. Филамент можно даже изготавливать в домашних условиях, используя в качестве сырья пустые контейнеры из ПЭТФ: из этого материала изготавливаются бутылки для газированной воды и пива.

Существуют и эластичные варианты, имитирующие резину – такие, как NinjaFlex. А если «пластиковый» образ вам не по душе, то можно попробовать композиты на основе ПЛА с добавлением различных наполнителей: песчаника, металлической пыли и даже древесины. Конечно же, физические и механические характеристики таких композитов несравнимы с настоящим камнем или сталью, но если вместо внешнего сходства вам необходима именно прочность и износоустойчивость, то всегда можно попробовать специальные композиты, армированные углеволокном.

Остается лишь выбрать 3D-принтер по душе, что может быть нелегким делом ввиду растущего разнообразия: серьезные дизайнеры могут выбрать относительно большие устройства с двумя-тремя печатающими головками, в то время как для начинающих пользователей доступно множество простых в эксплуатации моделей с относительно скоромными характеристиками, но высоким уровнем автоматизации и вполне доступными ценами. Некоторые наиболее бюджетные устройства можно приобрести всего за 200-300$, а цены на филаменты начинаются от 10$ за килограмм.

Для тех, кто хочет знать больше

  • Почему 3D-принтеры придут в каждый дом или как я впервые пользовался 3D-принтером — первый опыт работы с 3D-принтером: подводные камни и первые навыки
  • 12 полезных вещей, которые можно напечатать на 3D принтере — с чего стоит начать, если у вас появился 3D-принтер
  • Как 3D-принтеры меняют нашу жизнь — что мы станем печатать на 3D-принтерах в ближайшем будущем
  • 7 гаджетов, которые должен попробовать каждый — что еще стоит попробовать лично помимо 3D-принтеров
  • 10 роботов на солнечных батареях, которые можно собрать вместе с детьми — простые и доступные конструкторы, позволяющие приобщить детей к современным технологиям

Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.

От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости. Происходит засветка источником света принтера. Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

SLA-принтер на примере Formlabs Form 2

SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.

DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

DLP-принтер на примере SprintRay MoonRay S

Области применения 3D-принтера

Технология 3D-печати открыла огромные возможности для производства практически во всех наиболее важных сферах человеческой жизни. Что можно сделать на 3D-принтерах, и где они применяются?

  • Производство оружия. Думаете, пистолет из пластмассы не будет работать? Еще как будет! Это доказал гражданин США, пронесший в аэропорт полноценный огнестрельный пистолет из пластмассы, который нельзя было засечь на металлодетекторах. А в 2012 году компания Defense Distributed представила оружие, которое может распечатать любой человек у себя дома на 3D-принтере, имея соответствующую модель. После этого в США был принят закон о запрете использования трехмерных технологий в изготовлении оружия.
  • Построить дом теперь стало еще проще: 3D-технологии пришли и в сферу строительства. Первый дом был «распечатан» в 2014 году, а целое здание, произведенное с помощью 3D-печати, было представлено широкой общественности в 2021 году.
  • В производстве трехмерная печать позволяет значительно ускорить процесс изготовления деталей.
  • Тестовые 3D-принтеры на данный момент способны воспроизводить человеческие органы. Для этого на специальную биологическую основу наносят клетки нужного типа. Но эта технология пока находится на стадии разработки.
  • Зато в области изготовления протезов 3D-принтеры уже активно используются. С их помощью производят различные импланты: частицы костей и хрящевых тканей.
  • Трехмерные принтеры участвуют и в создании дорогостоящей техники: например, беспилотный самолет Polecat был практически полностью изготовлен с помощью 3D-технологий.

Как можно заметить, ответ на вопрос о том, что можно сделать на 3D-принтере, довольно обширен. Скорее всего, эта область и дальше будет активно развиваться, и принесет немало плюсов человеческой цивилизации. Возможности 3D-принтера практически безграничны.

SLS

Главное преимущество технологии перед FDM и SLA — SLS-печать не требует создания поддерживающих структур, ведь материалом поддержки служит окружающий модель материал — это позволяет печатать изделия любой формы, с любым количеством внутренних полостей, и заполнять ими весь рабочий объем принтера. SLS-принтеры работают с широким спектром материалов, а их принты прочнее, чем большинство напечатанных FDM или стереолитографией.

Благодаря прочностным характеристикам, напечатанные на SLS-принтерах детали могут использоваться в практических целях, а не только как прототипы и декоративные элементы.

Для создания объекта аппарат направляет лазер на слой мелкофракционного порошка, сплавляя частицы друг с другом для формирования слоя изделия. Затем, устройство рассыпает следующую порцию порошка на поверхность готового слоя и разравнивает его, а лазер расплавляет, создавая следующий слой изделия. Процедура повторяется до тех пор, пока печать не будет завершена. Есть у SLS-принтеров и минус — их стоимость. Они очень дороги, по сравнению с FDM и SLA/DLP. Это связано с ценой необходимых для такой печати высокоэнергетических лазеров. В принципе, стоимость даже самых дешевых SLS-принтеров совсем недавно начиналась от $200 000. Тем не менее, некоторые компании в настоящее время работают над тем, чтобы сделать данную технологию более доступной, поэтому есть шанс, что приобрести SLS-принтер в ближайшем будущем смогут позволить себе даже любители. Один из примеров — польская компания Sinterit.

SLS-принтер на примере Sinterit Lisa Pro

Извлеченная из SLS-принтера модель не требует удаления поддержек и может использоваться без постобработки, ее надо лишь очистить от лишнего порошка.

Polyjet

Главное преимущество технологии Polyjet в ее мультиматериальности — многие Polyjet-принтеры способны печатать объект большим количеством различных материалов одновременно, что позволяет создавать изделия состоящие из участков с разными механическими и оптическими свойствами, то есть — разной твердости и цвета. Это фирменная технология ]Stratasys[/anchor].

Пример: принтер Stratasys и напечатанные на нем кроссовки.

Polyjet 3D-принтеры распыляют крошечные капельки фотополимерной смолы на поверхность и полимеризуют их ультрафиолетовым излучением.

Этот процесс повторяется до тех пор, пока не будет создан объект. В отличие от FDM-принтеров, Polyjet-устройства могут наносить материал из многочисленных сопел одновременно.

Polyjet-принтер на примере Stratasys J750

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]